

Eduard Preis,^a Wenyue Dong,^a Gunther Brunklaus,^b Ullrich Scherf^a

^a Bergische Universität Wuppertal, Macromolecular Chemistry Group (buwmakro) and Institute for Polymer Technology, Gauss-Str. 20, D-42119 Wuppertal, Germany. ^b Westfälische Wilhelms-Universität, Institute for Physical Chemistry, Corrensstr. 28/30 D-48149 Münster, Germany.

Contact: preis@uni-wuppertal.de; scherf@uni-wuppertal.de

Introduction

Microporous Polymer Networks (MPNs) comprise a rapidly growing area of materials science towards future mass applications in catalysis, gas storage/separation or as active porous materials for organic electronic devices and sensors [1-7].

MPNs that contain aggregate-induced emission (AIE)-active tetraphenylethylene (TPE) or other tetraarylethylene units have been generated in a reductive polyolefination process starting from four different tris($\langle , \langle -dichlorobenzyl \rangle$) arene derivatives with dicobalt octacarbonyl or chromium(II) acetate as reductive olefination agents. Microporosity with moderately high BET surface areas up to 500 m²/g could be combined with high solid state photoluminescence quantum yields up to 25.3 %.

Nitrogen adsorption (filled symbols)/desorption (open symbols) isotherms at 77 K for P1 (black squares), P2 (red circles), P3 (blue triangles), P4 (green stars); the inset shows the pressure range P/P₀ from 0 to 0.7.

Wavelength (nm) hching experiments with P4 pellets and p-toluidine or aniline as analyte

	BET surface P area (m²/g)	ore volume (cc)	H ₂ uptake (%)	CO2 uptake (%)	CH₄ uptake (%)	Selectivity (CO ₂ /CH ₄) (298 K)	Selectivity (N ₂ /H ₂) (77 K)		UV/Vis (λ _{max} , nm)	PL (λ _{max} , nm)	PLQY (%)	First decomposition step (TGA, under argon, °C)
P1	462	1.76	0.44	1.46	0.11	4.7	24.2	P1	352	540	3.5	272 (2.5 %)
P2	502	1.87	0.57	2.54	0.26	3.6	19.3	P2	363	540	6.5	386 (2.6 %)
Р3	200	1.05	0.35	1.58	0.12	4.6	18.0	P3	367	no PL detected	-	296 (7.9 %)
P4	475	1.16	0.55	2.58	0.26	3.6	12.6	P4	392	560	25.3	408 (1.5 %)

Conclusion

Novel microporous polymer networks P1-P4 have been successfully synthesized via a reductive polyolefination protocol.

- Polymer network P4 shows an intense yellow photoluminescence peaking at 560 nm with a remarkably high PLQY of 25.3 %.
- Intrinsic microporosity with a moderately high BET surface area up to 500 m²/g was determined.
- Combination of microporosity and high solid state PLQY (based on the AIE effect) clearly qualifies P4 as an attractive target for solid state sensing,
- Notably, orienting PL quenching experiments have demonstrated a distinct response to aromatic amine vapors (showed for aniline and p-toluidine).
- A. Thomas, Angew. Chem. Int. Ed. 2010, 49, 8328-8344.
 D. Wu, F. Xu, B. Sun, R. Fu, H. He, K. Matyjaszewski, Chem. Rev. 2012, 112, 3959-4015
 R. Dawson, A. I. Cooper, D. J. Adams, Prog. Polym. Sci. 2012, 4, 530-563.
 N. B. McKeown, P. M. Budd, Chem. Soc. Rev. 2006, 35, 675-683.

- Ben, H. Ren, S. Ma, D. Cao, J. Lan, X. Jing, W. Wang, J. Xu, F. Deng, J. M. Simn 09, 48, 9457-9460. nons, S. Qiu, G. Zhu, Angew. Chem. Int. Ed
- 2009, 49, 943 (943) (79400).
 K. D. S. Kundu, J. Schmidt, C. Bleschke, A. Thomas, S. Blechert, Angew. Chem. Int. Ed. 2012, 51, 5456-5459.
 R. Morris, P. S. Wheatley, Angew. Chem. Int. Ed. 2008, 47, 4966-4981.
 E. Preis, W. Dong, G. Brunklaus, U. Scherf, J. Mater. Chem C, 2015, 3, 1582-1587.
- [6] [7] [8]

PL qu